striving & singing
$$\dbinom{n}{m}=\dfrac{n!}{m!(n-m)!}$$
$$\dbinom{n+m}{n}=\dbinom{n+m}{m}$$
$$\dbinom{n+r+1}{r}=\sum_{i=0}^{r}\dbinom{n+r}{r}$$
$$\dbinom{n}{l}\dbinom{l}{r}=\dbinom{n}{r}\dbinom{n-r}{l-r}$$
$$\sum_{i=0}^{n}\dbinom{n}{i}=2^n$$
$$\sum_{i=0}^{n}(-1)^i\dbinom{n}{i}=0$$
$$\sum_{i=r}^{n}\dbinom{i}{r}=\dbinom{n+1}{r+1}$$
$$(x+y)^n=\sum_{i=0}^{n}\dbinom{n}{i}x^iy^{n-i}$$
$$\sum_{i=0}^{n}\dbinom{n}{i}^2=\dbinom{2n}{n}$$
return