striving & singing
$$\sum_{d|n}\mu(d)=[n=1]$$
$$I(n)=1$$
$$id(n)=n$$
$$(f*g)(n)=\sum_{d|n}f(d)g(\frac{n}{d})$$
$$\mu*I=\varepsilon$$
$$(\mu*I)(n)=\sum_{d|n}\mu(d)=[n=1]=\varepsilon(n)$$
$$\varphi*I=id$$
$$(\varphi*I)(n)=\sum_{d|n}\varphi(d)=n=id(n)$$
$$\mu*id=\varphi$$
$$(\mu*id)(n)=\sum_{d|n}\mu(d)\times\frac{n}{d}=n\times\frac{\varphi(n)}{n}=\varphi(n)$$
$$\sum_{i=1}^{n}\sum_{j=1}^{n}\gcd(i,j)$$
$$\sum_{i=1}^{n}\sum_{j=1}^{n}id(\gcd(i,j))$$
$$\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{d|\gcd(i,j)}\varphi(d)$$
$$\sum_{d=1}^{n}\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\varphi(d)$$
$$\sum_{d=1}^{n}\varphi(d)\left\lfloor\frac{n}{d}\right\rfloor^2$$
$$\sum_{i=1}^{n}\sum_{j=1}^{m}[\gcd(i,j)=1]$$
$$\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{d|\gcd(i,j)}\mu(d)$$
$$\sum_{d=1}^{\min(n,m)}\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{d}\right\rfloor}\mu(d)$$
$$\sum_{d=1}^{\min(n,m)}\mu(d)\left\lfloor\frac{n}{d}\right\rfloor\left\lfloor\frac{m}{d}\right\rfloor$$
$$\sum_{x=1}^{a}\sum_{y=1}^{b}[\gcd(x,y)=d]$$
$$\sum_{x=1}^{\left\lfloor\frac{a}{d}\right\rfloor}\sum_{y=1}^{\left\lfloor\frac{b}{d}\right\rfloor}\varepsilon(\gcd(x,y))$$
$$\sum_{x=1}^{\left\lfloor\frac{a}{d}\right\rfloor}\sum_{y=1}^{\left\lfloor\frac{b}{d}\right\rfloor}\sum_{g|\gcd(x,y)}\mu(g)$$
$$\sum_{g=1}^{\min(\left\lfloor\frac{a}{d}\right\rfloor,\left\lfloor\frac{b}{d}\right\rfloor)}\sum_{x=1}^{\left\lfloor\frac{a}{dg}\right\rfloor}\sum_{x=1}^{\left\lfloor\frac{b}{dg}\right\rfloor}\mu(g)$$
$$\sum_{g=1}^{\min(\left\lfloor\frac{a}{d}\right\rfloor,\left\lfloor\frac{b}{d}\right\rfloor)}\left\lfloor\frac{a}{dg}\right\rfloor\left\lfloor\frac{b}{dg}\right\rfloor\mu(g)$$
$$\sum_{i=1}^{n}\sum_{j=1}^{n}ij\gcd(i,j)$$
$$\sum_{i=1}^{n}\sum_{j=1}^{n}ij\sum_{d|\gcd(i,j)}\varphi(d)$$
$$\sum_{d=1}^{n}\varphi(d)d^2\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}i\sum_{j=1}^{\left\lfloor\frac{n}{d}\right\rfloor}j$$
$$\sum_{d=1}^{n}\varphi(d)d^2\frac{\left\lfloor\frac{n}{d}\right\rfloor^2(\left\lfloor\frac{n}{d}\right\rfloor+1)^2}{4}$$
return